

Warm-up exercises:

pg 25, #1-9 (top of page)

A Quick digression ... What does it mean that 2 things correspond?

• To be similar, to match, to have an obvious relationship

Do 2 things that correspond have to be exactly alike?

Nope...

Can 2 things that correspond be exactly alike?

- Yup...
- ...in fact this is a special relationship that is very interesting...
- ...in math we have a special name for this type of correspondence...

Postulate 1-5 (the Ruler Postulate)

- There's a 1-to-1 correspondence btwn the real number line and the pts on a line.
- Translation...

...basically just gives us permission to measure the length of a segment.

Consider \overline{AB} , \overline{BC} and \overline{AC} ... how do they relate?

• In math:

$$\frac{2}{AB} + \frac{4}{BC} = \frac{6}{AC}$$

• In English:

The sum of the lengths of segments \overline{AB} and \overline{BC} equals the length of segment \overline{AC} .

Post Sig Add Post

Postulate 1-6 (Segment Addition Postulate)

- If pt B is on \overline{AC} btwn pts A & C, then AB + BC = AC.
- ...basically gives us permission to combine segments or add their lengths.

Example - pg 29, #10

$$\frac{(3 \times 41)}{R} + \frac{(2 \times -2)}{(2 \times -2)} = \frac{1}{2}$$

If
$$RS = 3x + 1$$
, $ST = 2x - 2$, $RT = 64$

• what is
$$x$$
? = $\sqrt{3}$

• what is
$$ST$$
? = 2 (13)-2 = 24

$$x = 13$$

Angle

• 2 rays that share a common endpt provided they do not lie on the same line.

• The rays are the sides of the angle.

• The endpt in the vertex of the angle.

Represented symbol ∠

• Named by (see above diagram):

- The 3 pts defining the rays: _ABC (vertex always in the middle!)

- By the vertex (if there is no ambiguity): _B

- Can also number the ∠ and refer it by the number: ∠1

LI or LAB(

Does it make sense to name any of the 3 angles ∠B?

Postulate 1-7 (the Protractor Postulate)

- Simply gives us permission to ...
 - ...measure ∠'s
- We note the measure of ∠COD as m∠COD

• If pt D lies in the interior of $\angle COD$, then $m\angle ABD + m\angle DBC = m\angle ABC$ Gives add the sequence $ABD + m\angle DBC = mABC$ $ABD + m\angle DBC = mABC$ ABD + mABD + mABD + mABD + mABDD +

$$\angle COD \cong \angle DEF$$

Congruent angles

Angles that have the same measure

If $m\angle COD = m\angle FGH$, then $\angle COD \cong \angle FGH$

